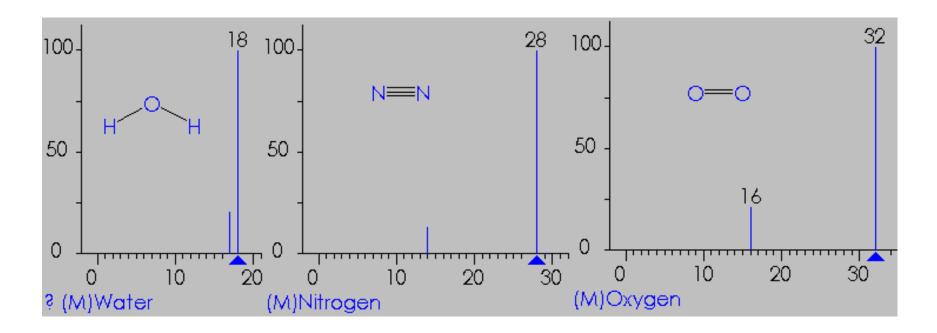


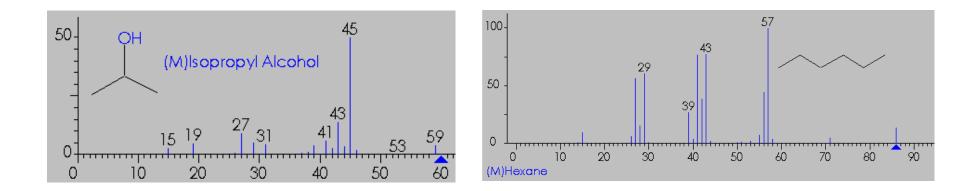
Quadrupole Mass Spectrometry Concepts

Mass Spectrometers for Residual Gas Analysis

What does Residual Gas Analysis allow us to do?


- RGA is the examination of the molecular components present in a vessel or evolved from a system.
 It allows us to analyse, ON-LINE and in REAL time:
- Base Pressure Fingerprint
- Leak Detection
- Virtual Leaks / desorption
- Outgassing / Bakeout Cycles
- Pump Performance
- Chamber contaminants

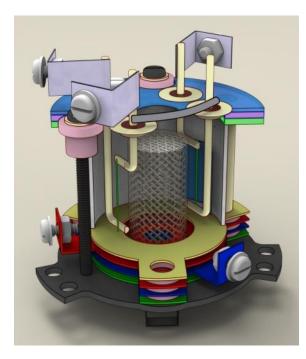
• Characterise your system and process for optimum results

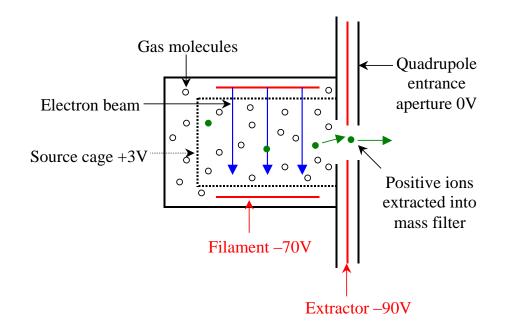

Typical contaminant species present may be readily identified:

- Air leak: m/e 28 / 32 (ca. 4.5:1 ratio) confirm by the presence of peaks at m/e 14, 16
- Water: m/e 18 confirm by m/e 17

Typical contaminant species present may be readily identified:

 Hydrocarbons: characteristic groups of peaks, typical peaks at m/e 57, 55, 45, 43
 High mass peaks - back-streaming of oil or Vacuum Grease
 Low mass peaks - Cleaning fluid / solvent residue


Residual Gas Analysis : How it works


IONISATION – Electron Impact Ionisation (EI)

- Operation depends on the conversion of gas molecules into charged particles, typically positive ions / fragments.
- Achieved by electron impact ionisation via thermionic emission from a hot filament.
- A typical current is 1x10⁻⁴Amps.
- Ions extracted into the mass filter.
- *Note:* Ionisation depends on the nature of the species involved.
- If a species is readily ionised it produces a higher MS signal than one which is poorly ionised.
- Use N₂ as a standard, RELATIVE SENSIVITY = 1
- *c.f.* Benzene = 5.9 and Helium = 0.14.

Residual Gas Analysis: How it works

IONISATION – Electron Impact Ionisation (EI)

How it works : IONISATION

The choice of filament material is important:

Material	Operating Temperature	Comments		
Tungsten	2400 K	Too hot for RGA use Reacts with oxygen to give CO, CO ₂		
Rhenium	2300 K	Too hot for RGA use Forms compounds which are insulators		
Thoria (Thoria coated Iridium)	1900 K	Good general purpose Robust		
LaB_6	1300 K	Not robust enough for RGA use Very brittle		

Lower operating temperature = lower outgassing

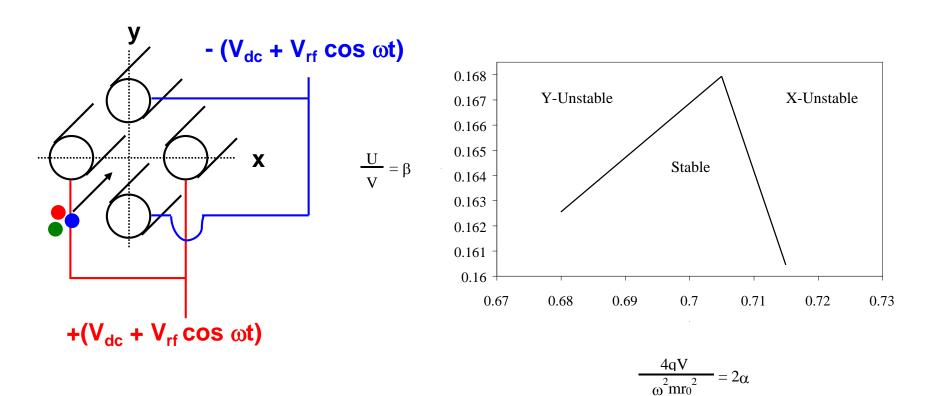
How it works : IONISATION

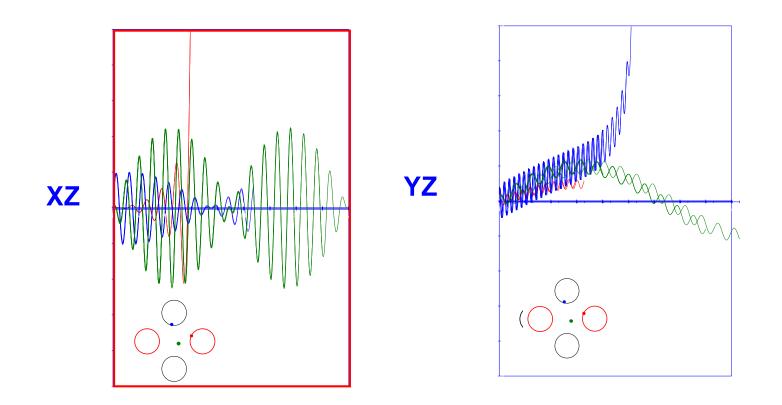
It is also important to note that EI yields several types of ions:

Ion	Description		
Molecular	The molecule with a positive charge by loss of an electron		
Base	The most abundant ion in the spectrum		
Fragment	Formed by cleavage of one or more bonds in the molecule		
Rearrangement	Formed by bond cleavage and atomic migration		
Doubly Charged	2+ Ions from 2 electron loss steps appearing at 1/2 mass i.e. m/2		
Metastable	Fragmentation of ion into an ion of lower mass + a neutral particle		

See cracking pattern section for further details. Note: Fragment ions are also known as Product or Daughter Ions

How it works : THE MASS FILTER


- The mass filter differentiates the ions produced and selects species for detection.
- The most common form of mass filter is the Quadrupole.
- A Quadrupole is 2 pairs of parallel, equidistant metal rods (poles) biased at equal, but opposite potentials
- These twin potentials contain fixed DC and alternating RF components. By varying the RF component the resultant field produced by the rods may be varied.

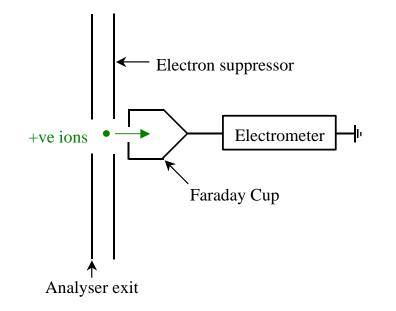

How it works: THE MASS FILTER

- Any ions entering the quadrupole field experience potential differences deflecting them from their original trajectory.
- The extent of deflection of any ion entering the field is related to its mass : charge (m/e or m/z) ratio.
- At each interval on the RF scan only one m/e ratio resonates with the field allowing the ion to pass along the z-axis.
- All other species are deflected and neutralised by impact upon the rods of the quadrupole

How it works : THE MASS FILTER

How it works : THE MASS FILTER -Mathieu Stability Diagrams

How it works : THE DETECTOR


• Filtered ions strike the detector to result in an ion current which is measured by a sensitive amplifier.

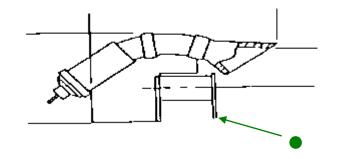
Two main types of Detector:

- a) The Faraday Cup an earthed passive conducting surface with a suppressor electrode to avoid false measurement.
- Fast moving ions strike the cup cause a 'shower' of 'secondary' electrons. The use of the 'cup' rather than a plate, allows all electrons to be collected.
- Hence, one ion arriving at the Faraday needs one electron for neutralisation but causes several electrons to be emitted; this provides amplification – several electrons for each ion.

How it works : THE DETECTOR

- The Faraday Cup: Detection limits
- Ion current for N₂ is 10⁻⁴ amps / Torr
- At 10⁻⁸ Torr of N₂, 10⁻⁸ * 10⁻⁴ = 10⁻¹² amps
- At 10⁻¹¹ Torr of $N_2 = 10^{-15}$ amps

 \Rightarrow Detection limit for conventional analogue amplifier


How it works : THE DETECTOR

• **b) Secondary Electron Multiplier** / Single Channel Electron Multiplier (SEM / SCEM):

A surface designed to generate secondary electrons.

- The ion impacts the surface generating 2 or 3 electrons each of which undergo further surface collisions generating more electrons, and so on in a cascade effect.
- Power for this cascade provided by an applied voltage.
- Gain is typically 10³ (10² for a channel plate)

Minimum detectable pressure 10⁻¹⁴ Torr to 10⁻¹³ Torr

Detector Pros and Cons:

Faraday Cup :

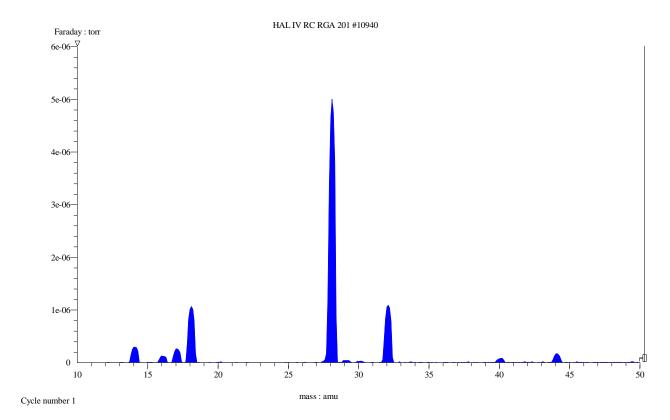
- Lower cost
- Indestructible
- Accurate
- BUT:
- Detection limit 10⁻¹¹ Torr
- Measurement relatively slow near detection limit

SEM / SCEM :

- Detection limit 10⁻¹⁴ 10⁻¹³ Torr with analogue detection
- Faster measurement

BUT :

- Expensive/Expendable/Sensitivity species dependent
- Sensitivity time / application dependent
- Typical maximum pressure of 10⁻⁵ 10⁻⁶ Torr



Resolution :

- The ability to separate /resolve ions of different m/e ratios
- All definitions directly / indirectly relate peak width to height
- For example:
 M / ΔM
- M at 10% peak height where $\Delta M < 1$ a.m.u.
- *i.e.* For any given mass M, the peak width at 10% of the peak height, measured from the baseline, is less than 1 amu
- This may be complicated if the mass peaks of trace species occur in the peak tail of a major species e.g. the detection of m/e 27 or m/e 29 in the presence of N₂ at m/e 28.

Interpretation and Cracking Patterns:

• RGA data can be presented as a profile of mass / charge peaks. e.g. the RGA of Air :

Cracking Patterns:

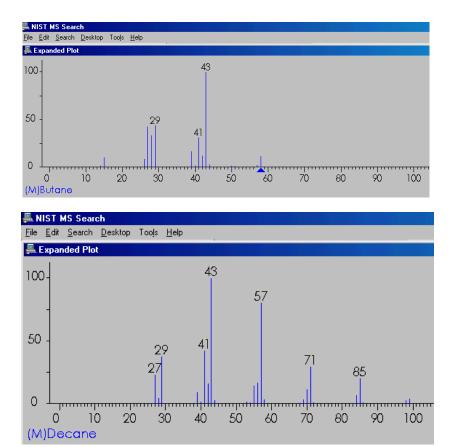
 Cracking arises during ionisation when the high energy electrons used not only ionise species but fragment them. For CO: ¹²C¹⁶O + e⁻ → (¹²C¹⁶O)⁺ lonisation to give a peak at m/e= 28 ¹²C¹⁶O + e⁻ → ¹²C + ¹⁶O + Cracking to give a peak at m/e = 16 ¹²C¹⁶O + e⁻ → ¹²C⁺ + ¹⁶O Cracking to give a peak at m/e= 12
 This fragmentation can be used to differentiate isobaric species: ¹²C¹⁶O from ¹⁴N₂ for example.

 $^{14}\mathrm{N}_2$ has peaks at m/e 28 ($^{14}\mathrm{N}_2^+$) and m/e 14 ($^{14}\mathrm{N}^+$) from:

 $\label{eq:started_st$

Interpretation and Cracking Patterns:

- Using Cracking Patterns it is possible to identify all species
- NOTE: The cracking pattern is directly related to the energy of the electrons used i.e. Under normal conditions the Cracking pattern is characteristic of a species


Interpretation and Cracking Patterns:

- Cracking pattern example Linear Hydrocarbons
- Decane ($C_{10}H_{22}$) and Butane (C_4H_{10}) show similarities why?

Both compounds show Clusters of Peaks at:

> m/z 57 m/z 43 m/z 29

 \Rightarrow Loss of unit of mass 14

Interpretation and Cracking Patterns:

Cracking pattern example The mass 14 unit \Rightarrow loss of alkyl-type species CH₂ i.e.

 $C_{10}H_{22}+e^{-} \rightarrow C_{10}H_{21}^{+} +e^{-} \rightarrow CH_{3}^{+}, C_{2}H_{5}^{+}, C_{3}H_{7}^{+}, C_{4}H_{9}^{+}, C_{5}H_{11}^{+} etc.$

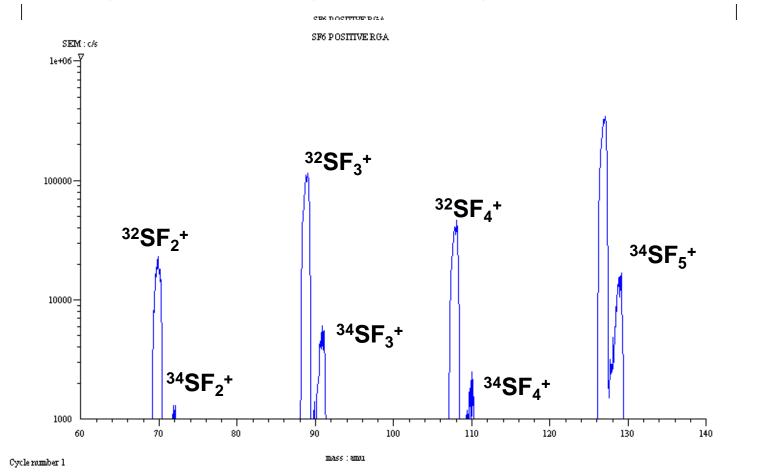
And

 C_4H_{10} + $e^- \rightarrow C_4H_9$ + + $e^- \rightarrow CH_3$ +, C_2H_5 +, C_3H_7 +

 \Rightarrow FRAGMENTATION – Bond cleavage AND Ionisation.

Interpretation:

- Isotopic Abundance.
- Many species exist as several naturally occurring isotopes:


Atom	Isotopes and relative abundances		
Carbon	$^{12}C - 100, ^{13}C - 1.1$		
Nitrogen	$^{14}N - 100, ^{15}N - 0.4$		
Oxygen	16 O - 100, 18 O - 0.2		
Fluorine	Monoisotopic		
Chlorine	$^{35}\text{Cl} - 100, ^{37}\text{Cl} - 32.5$		
Bromine	79 Br – 100, 81 Br - 98		
Iodine	Monoisotopic		
Phosphorous	Monoisotopic		
Sulfur	32 S - 100, 34 S - 4.4		
Silicon	28 Si - 100, 29 Si - 5.1, 30 Si - 3.4		

Quadrupole Mass Spectrometers for Advanced Science

Residual Gas Analysis

Interpretation :

Isotopic Abundance eg: Sulfur isotopes in the MS of SF₆

Interpretation:

• General steps in interpretation of a Mass Spectrum.

1. Look for the Molecular Ion(s)

- 2. Note the general appearance of the spectrum
- 3. Check spectrum for peak clusters for Isotope patterns
- 4. Check for low-mass neutral fragment loss e.g. CH₂
- 5. Check for characteristic low-mass fragments
- 6. Compare to reference spectra

Quadrupole Mass Spectrometers

Hiden manufactures a wide range of MS systems, all tailored to specific customer applications.

Options include:

- Mass Ranges of 50, 100, 200, 300, 510, 1000 and 2500 amu
- Ioniser options including cross-beam, gold plated and platinum
- Detectors: Faraday, and electron multipliers, channelplate, channeltron, analogue current measurement and digital pulse ion counting options.
- 6mm, 9 mm or 12mm pole diameter
- Single and triple filter options
- Ethernet, USB, and serial comms.

Hiden Gas Analysers

- Rugged modular construction with precision machined radial ceramic rod supports
- Powerful processor with data buffering for true multi-tasking operation
- Ion blast free for maximum sensitivity in He leak detection
- Detection to 5x10⁻¹⁴ Torr / PPB levels
- Bench, cart or console mounted
- Fully automated operation
- Application specific gas inlets
- Corrosive gas / oil free pumping
- Multi-stream options
- Quantitative gas analysis

Appendix 1

• Table 1a gives some of the common RGA contaminants

Name	Formula	Peak 1 m/e %	Peak 2 m/e %	Peak 3 m/e %	rel sens
Acetone	C ₃ H ₆ O	43 100	58 33	15 20	3.6
Air		28 100	32 27	14 6	1.0
Ammonia	NH ₃	17 100	16 80	15 8	1.3
Argon	Ar	40 100	20 16	36 0.3	1.2
Benzene	C_6H_6	78 100	77 19	52 16	5.9
Boron Trichloride	BCl ₃	81 100	58 33	15 20	1.0
Carbon Dioxide	CO_2	44 100	16 9	14 6	1.4
Carbon Monoxide	СО	28 100	12 5	16 2	1.05
Carbon Tetrafluoride	CCl ₄	69 100	50 12	19 7	1.0
Diborane	B_2H_6	26 100	27 97	24 90	1.0
Ethane	C_2H_6	28 100	27 33	30 26	2.6
Fomblin Oil		69 100	20 28	16 16	1.0
Freon 12	CCl_2F_2	85 100	87 32	50 16	2.7
Helium	He	4 100			0.14
Hydrogen	H_2	2 100	1 2		0.44

Appendix 2

 Table 1b gives more common RGA contaminants

Name	Formula	Peak 1 m/e %	Peak 2 m/e %	Peak 3 m/e %	rel sens
Hydrogen Chloride	HCl	36 100	38 32	35 17	1.6
Hydrogen Sulfide	H_2S	34 100	32 44	33 42	2.2
Krypton	Kr	84 100	86 31	82 21	1.7
Methane	CH ₄	16 100	15 85	14 16	1.6
Methanol	CH ₃ OH	31 100	32 67	29 65	1.8
Neon	Ne	20 100	22 10	21 0.3	0.23
Nitrogen	N_2	28 100	14 5	29 1	1.0
Oxygen	O 2	32 100	16 9		0.86
Phosphine	PH ₃	34 100	33 33	31 32	2.6
Pump Oil		57 100	55 73	43 73	1.0
Silane	SiH ₄	30 100	31 78	29 29	1.0
Silicon Tetrafluoride	SiF ₄	85 100	86 5	28 4	1.0
Sulfur Dioxide	SO ₂	64 100	48 50	32 10	2.1
Water	H ₂ O	18 100	17 21	16 2	0.9
Xenon	Xe	132 100	129 98	131 79	3.0